PulseView  unreleased development snapshot
A Qt-based sigrok GUI
logicsegment.cpp
Go to the documentation of this file.
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "config.h" // For HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
21 
22 #include <extdef.h>
23 
24 #include <cassert>
25 #include <cmath>
26 #include <cstdlib>
27 #include <cstring>
28 #include <cstdint>
29 
30 #include "logic.hpp"
31 #include "logicsegment.hpp"
32 
33 #include <libsigrokcxx/libsigrokcxx.hpp>
34 
35 using std::lock_guard;
36 using std::recursive_mutex;
37 using std::max;
38 using std::min;
39 using std::shared_ptr;
40 using std::vector;
41 
42 using sigrok::Logic;
43 
44 namespace pv {
45 namespace data {
46 
47 const int LogicSegment::MipMapScalePower = 4;
48 const int LogicSegment::MipMapScaleFactor = 1 << MipMapScalePower;
49 const float LogicSegment::LogMipMapScaleFactor = logf(MipMapScaleFactor);
50 const uint64_t LogicSegment::MipMapDataUnit = 64 * 1024; // bytes
51 
52 LogicSegment::LogicSegment(pv::data::Logic& owner, uint32_t segment_id,
53  unsigned int unit_size, uint64_t samplerate) :
54  Segment(segment_id, samplerate, unit_size),
55  owner_(owner),
56  last_append_sample_(0),
57  last_append_accumulator_(0),
58  last_append_extra_(0)
59 {
60  memset(mip_map_, 0, sizeof(mip_map_));
61 }
62 
64 {
65  lock_guard<recursive_mutex> lock(mutex_);
66 
67  for (MipMapLevel &l : mip_map_)
68  free(l.data);
69 }
70 
71 shared_ptr<const LogicSegment> LogicSegment::get_shared_ptr() const
72 {
73  shared_ptr<const Segment> ptr = nullptr;
74 
75  try {
76  ptr = shared_from_this();
77  } catch (std::exception& e) {
78  /* Do nothing, ptr remains a null pointer */
79  }
80 
81  return ptr ? std::dynamic_pointer_cast<const LogicSegment>(ptr) : nullptr;
82 }
83 
84 template <class T>
85 void LogicSegment::downsampleTmain(const T*&in, T &acc, T &prev)
86 {
87  // Accumulate one sample at a time
88  for (uint64_t i = 0; i < MipMapScaleFactor; i++) {
89  T sample = *in++;
90  acc |= prev ^ sample;
91  prev = sample;
92  }
93 }
94 
95 template <>
96 void LogicSegment::downsampleTmain<uint8_t>(const uint8_t*&in, uint8_t &acc, uint8_t &prev)
97 {
98  // Handle 8 bit samples in 32 bit steps
99  uint32_t prev32 = prev | prev << 8 | prev << 16 | prev << 24;
100  uint32_t acc32 = acc;
101  const uint32_t *in32 = (const uint32_t*)in;
102  for (uint64_t i = 0; i < MipMapScaleFactor; i += 4) {
103  uint32_t sample32 = *in32++;
104  acc32 |= prev32 ^ sample32;
105  prev32 = sample32;
106  }
107  // Reduce result back to uint8_t
108 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
109  prev = (prev32 >> 24) & 0xff; // MSB is last
110 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
111  prev = prev32 & 0xff; // LSB is last
112 #else
113 #error Endianness unknown
114 #endif
115  acc |= acc32 & 0xff;
116  acc |= (acc32 >> 8) & 0xff;
117  acc |= (acc32 >> 16) & 0xff;
118  acc |= (acc32 >> 24) & 0xff;
119  in = (const uint8_t*)in32;
120 }
121 
122 template <>
123 void LogicSegment::downsampleTmain<uint16_t>(const uint16_t*&in, uint16_t &acc, uint16_t &prev)
124 {
125  // Handle 16 bit samples in 32 bit steps
126  uint32_t prev32 = prev | prev << 16;
127  uint32_t acc32 = acc;
128  const uint32_t *in32 = (const uint32_t*)in;
129  for (uint64_t i = 0; i < MipMapScaleFactor; i += 2) {
130  uint32_t sample32 = *in32++;
131  acc32 |= prev32 ^ sample32;
132  prev32 = sample32;
133  }
134  // Reduce result back to uint16_t
135 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
136  prev = (prev32 >> 16) & 0xffff; // MSB is last
137 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
138  prev = prev32 & 0xffff; // LSB is last
139 #else
140 #error Endian unknown
141 #endif
142  acc |= acc32 & 0xffff;
143  acc |= (acc32 >> 16) & 0xffff;
144  in = (const uint16_t*)in32;
145 }
146 
147 template <class T>
148 void LogicSegment::downsampleT(const uint8_t *in_, uint8_t *&out_, uint64_t len)
149 {
150  const T *in = (const T*)in_;
151  T *out = (T*)out_;
152  T prev = last_append_sample_;
153  T acc = last_append_accumulator_;
154 
155  // Try to complete the previous downsample
156  if (last_append_extra_) {
157  while (last_append_extra_ < MipMapScaleFactor && len > 0) {
158  T sample = *in++;
159  acc |= prev ^ sample;
160  prev = sample;
162  len--;
163  }
164  if (!len) {
165  // Not enough samples available to complete downsample
166  last_append_sample_ = prev;
168  return;
169  }
170  // We have a complete downsample
171  *out++ = acc;
172  acc = 0;
173  last_append_extra_ = 0;
174  }
175 
176  // Handle complete blocks of MipMapScaleFactor samples
177  while (len >= MipMapScaleFactor) {
178  downsampleTmain<T>(in, acc, prev);
179  len -= MipMapScaleFactor;
180  // Output downsample
181  *out++ = acc;
182  acc = 0;
183  }
184 
185  // Process remainder, not enough for a complete sample
186  while (len > 0) {
187  T sample = *in++;
188  acc |= prev ^ sample;
189  prev = sample;
191  len--;
192  }
193 
194  // Update context
195  last_append_sample_ = prev;
197  out_ = (uint8_t *)out;
198 }
199 
200 void LogicSegment::downsampleGeneric(const uint8_t *in, uint8_t *&out, uint64_t len)
201 {
202  // Downsample using the generic unpack_sample()
203  // which can handle any width between 1 and 8 bytes
204  uint64_t prev = last_append_sample_;
205  uint64_t acc = last_append_accumulator_;
206 
207  // Try to complete the previous downsample
208  if (last_append_extra_) {
209  while (last_append_extra_ < MipMapScaleFactor && len > 0) {
210  const uint64_t sample = unpack_sample(in);
211  in += unit_size_;
212  acc |= prev ^ sample;
213  prev = sample;
215  len--;
216  }
217  if (!len) {
218  // Not enough samples available to complete downsample
219  last_append_sample_ = prev;
221  return;
222  }
223  // We have a complete downsample
224  pack_sample(out, acc);
225  out += unit_size_;
226  acc = 0;
227  last_append_extra_ = 0;
228  }
229 
230  // Handle complete blocks of MipMapScaleFactor samples
231  while (len >= MipMapScaleFactor) {
232  // Accumulate one sample at a time
233  for (uint64_t i = 0; i < MipMapScaleFactor; i++) {
234  const uint64_t sample = unpack_sample(in);
235  in += unit_size_;
236  acc |= prev ^ sample;
237  prev = sample;
238  }
239  len -= MipMapScaleFactor;
240  // Output downsample
241  pack_sample(out, acc);
242  out += unit_size_;
243  acc = 0;
244  }
245 
246  // Process remainder, not enough for a complete sample
247  while (len > 0) {
248  const uint64_t sample = unpack_sample(in);
249  in += unit_size_;
250  acc |= prev ^ sample;
251  prev = sample;
253  len--;
254  }
255 
256  // Update context
257  last_append_sample_ = prev;
259 }
260 
261 inline uint64_t LogicSegment::unpack_sample(const uint8_t *ptr) const
262 {
263 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
264  return *(uint64_t*)ptr;
265 #else
266  uint64_t value = 0;
267  switch (unit_size_) {
268  default:
269  value |= ((uint64_t)ptr[7]) << 56;
270  /* FALLTHRU */
271  case 7:
272  value |= ((uint64_t)ptr[6]) << 48;
273  /* FALLTHRU */
274  case 6:
275  value |= ((uint64_t)ptr[5]) << 40;
276  /* FALLTHRU */
277  case 5:
278  value |= ((uint64_t)ptr[4]) << 32;
279  /* FALLTHRU */
280  case 4:
281  value |= ((uint32_t)ptr[3]) << 24;
282  /* FALLTHRU */
283  case 3:
284  value |= ((uint32_t)ptr[2]) << 16;
285  /* FALLTHRU */
286  case 2:
287  value |= ptr[1] << 8;
288  /* FALLTHRU */
289  case 1:
290  value |= ptr[0];
291  /* FALLTHRU */
292  case 0:
293  break;
294  }
295  return value;
296 #endif
297 }
298 
299 inline void LogicSegment::pack_sample(uint8_t *ptr, uint64_t value)
300 {
301 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
302  *(uint64_t*)ptr = value;
303 #else
304  switch (unit_size_) {
305  default:
306  ptr[7] = value >> 56;
307  /* FALLTHRU */
308  case 7:
309  ptr[6] = value >> 48;
310  /* FALLTHRU */
311  case 6:
312  ptr[5] = value >> 40;
313  /* FALLTHRU */
314  case 5:
315  ptr[4] = value >> 32;
316  /* FALLTHRU */
317  case 4:
318  ptr[3] = value >> 24;
319  /* FALLTHRU */
320  case 3:
321  ptr[2] = value >> 16;
322  /* FALLTHRU */
323  case 2:
324  ptr[1] = value >> 8;
325  /* FALLTHRU */
326  case 1:
327  ptr[0] = value;
328  /* FALLTHRU */
329  case 0:
330  break;
331  }
332 #endif
333 }
334 
335 void LogicSegment::append_payload(shared_ptr<sigrok::Logic> logic)
336 {
337  assert(unit_size_ == logic->unit_size());
338  assert((logic->data_length() % unit_size_) == 0);
339 
340  append_payload(logic->data_pointer(), logic->data_length());
341 }
342 
343 void LogicSegment::append_payload(void *data, uint64_t data_size)
344 {
345  assert(unit_size_ > 0);
346  assert((data_size % unit_size_) == 0);
347 
348  lock_guard<recursive_mutex> lock(mutex_);
349 
350  const uint64_t prev_sample_count = sample_count_;
351  const uint64_t sample_count = data_size / unit_size_;
352 
353  append_samples(data, sample_count);
354 
355  // Generate the first mip-map from the data
357 
358  if (sample_count > 1)
359  owner_.notify_samples_added(SharedPtrToSegment(shared_from_this()),
360  prev_sample_count + 1, prev_sample_count + 1 + sample_count);
361  else
362  owner_.notify_samples_added(SharedPtrToSegment(shared_from_this()),
363  prev_sample_count + 1, prev_sample_count + 1);
364 }
365 
366 void LogicSegment::append_subsignal_payload(unsigned int index, void *data,
367  uint64_t data_size, vector<uint8_t>& destination)
368 {
369  if (index == 0)
370  destination.resize(data_size * unit_size_, 0);
371 
372  // Set the bits for this sub-signal where needed
373  // Note: the bytes in *data must either be 0 or 1, nothing else
374  unsigned int index_byte_offs = index / 8;
375  uint8_t* output_data = destination.data() + index_byte_offs;
376  uint8_t* input_data = (uint8_t*)data;
377 
378  for (uint64_t i = 0; i < data_size; i++) {
379  assert((i * unit_size_ + index_byte_offs) < destination.size());
380  *output_data |= (input_data[i] << index);
381  output_data += unit_size_;
382  }
383 
384  if (index == owner_.num_channels() - 1) {
385  // We gathered sample data of all sub-signals, let's append it
386  append_payload(destination.data(), destination.size());
387  destination.clear();
388  }
389 }
390 
391 void LogicSegment::get_samples(int64_t start_sample,
392  int64_t end_sample, uint8_t* dest) const
393 {
394  assert(start_sample >= 0);
395  assert(start_sample <= (int64_t)sample_count_);
396  assert(end_sample >= 0);
397  assert(end_sample <= (int64_t)sample_count_);
398  assert(start_sample <= end_sample);
399  assert(dest != nullptr);
400 
401  lock_guard<recursive_mutex> lock(mutex_);
402 
403  get_raw_samples(start_sample, (end_sample - start_sample), dest);
404 }
405 
407  vector<EdgePair> &edges,
408  uint64_t start, uint64_t end,
409  float min_length, int sig_index, bool first_change_only)
410 {
411  uint64_t index = start;
412  unsigned int level;
413  bool last_sample;
414  bool fast_forward;
415 
416  assert(start <= end);
417  assert(min_length > 0);
418  assert(sig_index >= 0);
419  assert(sig_index < 64);
420 
421  lock_guard<recursive_mutex> lock(mutex_);
422 
423  // Make sure we only process as many samples as we have
424  if (end > get_sample_count())
425  end = get_sample_count();
426 
427  const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
428  const unsigned int min_level = max((int)floorf(logf(min_length) /
429  LogMipMapScaleFactor) - 1, 0);
430  const uint64_t sig_mask = 1ULL << sig_index;
431 
432  // Store the initial state
433  last_sample = (get_unpacked_sample(start) & sig_mask) != 0;
434  if (!first_change_only)
435  edges.emplace_back(index++, last_sample);
436 
437  while (index + block_length <= end) {
438  //----- Continue to search -----//
439  level = min_level;
440 
441  // We cannot fast-forward if there is no mip-map data at
442  // the minimum level.
443  fast_forward = (mip_map_[level].data != nullptr);
444 
445  if (min_length < MipMapScaleFactor) {
446  // Search individual samples up to the beginning of
447  // the next first level mip map block
448  const uint64_t final_index = min(end, pow2_ceil(index, MipMapScalePower));
449 
450  for (; index < final_index &&
451  (index & ~((uint64_t)(~0) << MipMapScalePower)) != 0;
452  index++) {
453 
454  const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
455 
456  // If there was a change we cannot fast forward
457  if (sample != last_sample) {
458  fast_forward = false;
459  break;
460  }
461  }
462  } else {
463  // If resolution is less than a mip map block,
464  // round up to the beginning of the mip-map block
465  // for this level of detail
466  const int min_level_scale_power = (level + 1) * MipMapScalePower;
467  index = pow2_ceil(index, min_level_scale_power);
468  if (index >= end)
469  break;
470 
471  // We can fast forward only if there was no change
472  const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
473  if (last_sample != sample)
474  fast_forward = false;
475  }
476 
477  if (fast_forward) {
478 
479  // Fast forward: This involves zooming out to higher
480  // levels of the mip map searching for changes, then
481  // zooming in on them to find the point where the edge
482  // begins.
483 
484  // Slide right and zoom out at the beginnings of mip-map
485  // blocks until we encounter a change
486  while (true) {
487  const int level_scale_power = (level + 1) * MipMapScalePower;
488  const uint64_t offset = index >> level_scale_power;
489 
490  // Check if we reached the last block at this
491  // level, or if there was a change in this block
492  if (offset >= mip_map_[level].length ||
493  (get_subsample(level, offset) & sig_mask))
494  break;
495 
496  if ((offset & ~((uint64_t)(~0) << MipMapScalePower)) == 0) {
497  // If we are now at the beginning of a
498  // higher level mip-map block ascend one
499  // level
500  if ((level + 1 >= ScaleStepCount) || (!mip_map_[level + 1].data))
501  break;
502 
503  level++;
504  } else {
505  // Slide right to the beginning of the
506  // next mip map block
507  index = pow2_ceil(index + 1, level_scale_power);
508  }
509  }
510 
511  // Zoom in, and slide right until we encounter a change,
512  // and repeat until we reach min_level
513  while (true) {
514  assert(mip_map_[level].data);
515 
516  const int level_scale_power = (level + 1) * MipMapScalePower;
517  const uint64_t offset = index >> level_scale_power;
518 
519  // Check if we reached the last block at this
520  // level, or if there was a change in this block
521  if (offset >= mip_map_[level].length ||
522  (get_subsample(level, offset) & sig_mask)) {
523  // Zoom in unless we reached the minimum
524  // zoom
525  if (level == min_level)
526  break;
527 
528  level--;
529  } else {
530  // Slide right to the beginning of the
531  // next mip map block
532  index = pow2_ceil(index + 1, level_scale_power);
533  }
534  }
535 
536  // If individual samples within the limit of resolution,
537  // do a linear search for the next transition within the
538  // block
539  if (min_length < MipMapScaleFactor) {
540  for (; index < end; index++) {
541  const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
542  if (sample != last_sample)
543  break;
544  }
545  }
546  }
547 
548  //----- Store the edge -----//
549 
550  // Take the last sample of the quanization block
551  const int64_t final_index = index + block_length;
552  if (index + block_length > end)
553  break;
554 
555  // Store the final state
556  const bool final_sample = (get_unpacked_sample(final_index - 1) & sig_mask) != 0;
557  edges.emplace_back(index, final_sample);
558 
559  index = final_index;
560  last_sample = final_sample;
561 
562  if (first_change_only)
563  break;
564  }
565 
566  // Add the final state
567  if (!first_change_only) {
568  const bool end_sample = get_unpacked_sample(end) & sig_mask;
569  if (last_sample != end_sample)
570  edges.emplace_back(end, end_sample);
571  edges.emplace_back(end + 1, end_sample);
572  }
573 }
574 
575 void LogicSegment::get_surrounding_edges(vector<EdgePair> &dest,
576  uint64_t origin_sample, float min_length, int sig_index)
577 {
578  if (origin_sample >= sample_count_)
579  return;
580 
581  // Put the edges vector on the heap, it can become quite big until we can
582  // use a get_subsampled_edges() implementation that searches backwards
583  vector<EdgePair>* edges = new vector<EdgePair>;
584 
585  // Get all edges to the left of origin_sample
586  get_subsampled_edges(*edges, 0, origin_sample, min_length, sig_index, false);
587 
588  // If we don't specify "first only", the first and last edge are the states
589  // at samples 0 and origin_sample. If only those exist, there are no edges
590  if (edges->size() == 2) {
591  delete edges;
592  return;
593  }
594 
595  // Dismiss the entry for origin_sample so that back() gives us the
596  // real last entry
597  edges->pop_back();
598  dest.push_back(edges->back());
599  edges->clear();
600 
601  // Get first edge to the right of origin_sample
602  get_subsampled_edges(*edges, origin_sample, sample_count_, min_length, sig_index, true);
603 
604  // "first only" is specified, so nothing needs to be dismissed
605  if (edges->size() == 0) {
606  delete edges;
607  return;
608  }
609 
610  dest.push_back(edges->front());
611 
612  delete edges;
613 }
614 
616 {
617  lock_guard<recursive_mutex> lock(mutex_);
618 
619  const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
621 
622  if (new_data_length > m.data_length) {
623  m.data_length = new_data_length;
624 
625  // Padding is added to allow for the uint64_t write word
626  m.data = realloc(m.data, new_data_length * unit_size_ +
627  sizeof(uint64_t));
628  }
629 }
630 
632 {
633  MipMapLevel &m0 = mip_map_[0];
634  uint64_t prev_length;
635  uint8_t *dest_ptr;
637  uint64_t accumulator;
638  unsigned int diff_counter;
639 
640  // Expand the data buffer to fit the new samples
641  prev_length = m0.length;
643 
644  // Break off if there are no new samples to compute
645  if (m0.length == prev_length)
646  return;
647 
649 
650  dest_ptr = (uint8_t*)m0.data + prev_length * unit_size_;
651 
652  // Iterate through the samples to populate the first level mipmap
653  const uint64_t start_sample = prev_length * MipMapScaleFactor;
654  const uint64_t end_sample = m0.length * MipMapScaleFactor;
655  uint64_t len_sample = end_sample - start_sample;
656  it = begin_sample_iteration(start_sample);
657  while (len_sample > 0) {
658  // Number of samples available in this chunk
659  uint64_t count = get_iterator_valid_length(it);
660  // Reduce if less than asked for
661  count = std::min(count, len_sample);
662  uint8_t *src_ptr = get_iterator_value(it);
663  // Submit these contiguous samples to downsampling in bulk
664  if (unit_size_ == 1)
665  downsampleT<uint8_t>(src_ptr, dest_ptr, count);
666  else if (unit_size_ == 2)
667  downsampleT<uint16_t>(src_ptr, dest_ptr, count);
668  else if (unit_size_ == 4)
669  downsampleT<uint32_t>(src_ptr, dest_ptr, count);
670  else if (unit_size_ == 8)
671  downsampleT<uint64_t>(src_ptr, dest_ptr, count);
672  else
673  downsampleGeneric(src_ptr, dest_ptr, count);
674  len_sample -= count;
675  // Advance iterator, should move to start of next chunk
676  continue_sample_iteration(it, count);
677  }
679 
680  // Compute higher level mipmaps
681  for (unsigned int level = 1; level < ScaleStepCount; level++) {
682  MipMapLevel &m = mip_map_[level];
683  const MipMapLevel &ml = mip_map_[level - 1];
684 
685  // Expand the data buffer to fit the new samples
686  prev_length = m.length;
688 
689  // Break off if there are no more samples to be computed
690  if (m.length == prev_length)
691  break;
692 
694 
695  // Subsample the lower level
696  const uint8_t* src_ptr = (uint8_t*)ml.data +
697  unit_size_ * prev_length * MipMapScaleFactor;
698  const uint8_t *const end_dest_ptr =
699  (uint8_t*)m.data + unit_size_ * m.length;
700 
701  for (dest_ptr = (uint8_t*)m.data +
702  unit_size_ * prev_length;
703  dest_ptr < end_dest_ptr;
704  dest_ptr += unit_size_) {
705  accumulator = 0;
706  diff_counter = MipMapScaleFactor;
707  while (diff_counter-- > 0) {
708  accumulator |= unpack_sample(src_ptr);
709  src_ptr += unit_size_;
710  }
711 
712  pack_sample(dest_ptr, accumulator);
713  }
714  }
715 }
716 
717 uint64_t LogicSegment::get_unpacked_sample(uint64_t index) const
718 {
719  assert(index < sample_count_);
720 
721  assert(unit_size_ <= 8); // 8 * 8 = 64 channels
722  uint8_t data[8];
723 
724  get_raw_samples(index, 1, data);
725 
726  return unpack_sample(data);
727 }
728 
729 uint64_t LogicSegment::get_subsample(int level, uint64_t offset) const
730 {
731  assert(level >= 0);
732  assert(mip_map_[level].data);
733  return unpack_sample((uint8_t*)mip_map_[level].data +
734  unit_size_ * offset);
735 }
736 
737 uint64_t LogicSegment::pow2_ceil(uint64_t x, unsigned int power)
738 {
739  const uint64_t p = UINT64_C(1) << power;
740  return (x + p - 1) / p * p;
741 }
742 
743 } // namespace data
744 } // namespace pv
void reallocate_mipmap_level(MipMapLevel &m)
void end_sample_iteration(SegmentDataIterator *it)
Definition: segment.cpp:286
void get_raw_samples(uint64_t start, uint64_t count, uint8_t *dest) const
Definition: segment.cpp:228
void downsampleGeneric(const uint8_t *in, uint8_t *&out, uint64_t len)
static const float LogMipMapScaleFactor
void append_payload(shared_ptr< sigrok::Logic > logic)
static const uint64_t MipMapDataUnit
static const int MipMapScalePower
std::shared_ptr< pv::data::Segment > SharedPtrToSegment
Definition: segment.hpp:131
void notify_samples_added(shared_ptr< Segment > segment, uint64_t start_sample, uint64_t end_sample)
Definition: logic.cpp:105
T value(details::expression_node< T > *n)
Definition: exprtk.hpp:12358
shared_ptr< const LogicSegment > get_shared_ptr() const
LogicSegment(pv::data::Logic &owner, uint32_t segment_id, unsigned int unit_size, uint64_t samplerate)
SegmentDataIterator * begin_sample_iteration(uint64_t start)
Definition: segment.cpp:258
m
Definition: CMakeCache.txt:621
recursive_mutex mutex_
Definition: segment.hpp:103
T max(const T v0, const T v1)
Definition: exprtk.hpp:1411
uint64_t get_subsample(int level, uint64_t offset) const
static std::string data()
Definition: exprtk.hpp:39024
uint8_t * get_iterator_value(SegmentDataIterator *it)
Definition: segment.cpp:298
uint64_t get_sample_count() const
Definition: segment.cpp:70
void downsampleTmain(const T *&in, T &acc, T &prev)
void append_subsignal_payload(unsigned int index, void *data, uint64_t data_size, vector< uint8_t > &destination)
void get_subsampled_edges(vector< EdgePair > &edges, uint64_t start, uint64_t end, float min_length, int sig_index, bool first_change_only=false)
T min(const T v0, const T v1)
Definition: exprtk.hpp:1404
void continue_sample_iteration(SegmentDataIterator *it, uint64_t increase)
Definition: segment.cpp:274
static const int MipMapScaleFactor
uint64_t get_unpacked_sample(uint64_t index) const
static uint64_t pow2_ceil(uint64_t x, unsigned int power)
void get_surrounding_edges(vector< EdgePair > &dest, uint64_t origin_sample, float min_length, int sig_index)
void append_samples(void *data, uint64_t samples)
Definition: segment.cpp:156
x y t t *t x y t t t x y t t t x *y t *t t x *y t *t t x y t t t x y t t t x(y+z)
void get_samples(int64_t start_sample, int64_t end_sample, uint8_t *dest) const
void downsampleT(const uint8_t *in, uint8_t *&out, uint64_t len)
struct MipMapLevel mip_map_[ScaleStepCount]
void pack_sample(uint8_t *ptr, uint64_t value)
unsigned int unit_size_
Definition: segment.hpp:111
unsigned int num_channels() const
Definition: logic.cpp:41
static const unsigned int ScaleStepCount
uint64_t get_iterator_valid_length(SegmentDataIterator *it)
Definition: segment.cpp:305
uint64_t unpack_sample(const uint8_t *ptr) const
atomic< uint64_t > sample_count_
Definition: segment.hpp:107