Error message

  • Warning: count(): Parameter must be an array or an object that implements Countable in theme_table() (line 1998 of /data/
  • Warning: count(): Parameter must be an array or an object that implements Countable in theme_table() (line 2061 of /data/
  • Deprecated function: implode(): Passing glue string after array is deprecated. Swap the parameters in drupal_get_feeds() (line 394 of /data/
  • Deprecated function: The each() function is deprecated. This message will be suppressed on further calls in menu_set_active_trail() (line 2405 of /data/

Uwe Hermann's blog

Yokogawa DLM2000 series oscilloscope support

We're happy to announce even more hardware support in libsigrok. It now supports the Yokogawa DLM2000 series oscilloscopes / mixed-signal scopes.

Thanks a lot to Soeren Apel for writing the code and testing on a Yokogawa DLM2054! We're especially happy about this new driver since it's the first Yokogawa device at all that we now support.

The DLM2000 series features 2 or 4 analog channels, and the 4-channel models can alternatively capture 3 analog channels + 8 digital ones. The scopes sample at 2.5GSa/s and feature a bandwidth of 200MHz-500MHz (depending on the model) and up to 250 Mpoints of memory.

The DLM2000 devices seem to specifically target various industrial uses and include some interesting analysis/reporting features like a "history search" and "replay" function, enhanced trigger facilities, Go / No-Go functions, a power-supply analysis feature, and more.

While the device can do some simple decoding of certain digital protocols such as SPI (apparently those are optional add-ons to buy), you can of course widely broaden the range of protocols by using the sigrok protocol decoders on the PC side.

The devices can be connected to a PC via either USB (USBTMC protocol), Ethernet (LXI), or GPIB. The protocol itself is SCPI-based, have a look at the source code if you're interested in this kind of stuff.

It might be possible to support the DLM4000 series with some minor updates of the driver at some point, probably even others. Patches and testers for that are highly welcome, if you own such a device please let us know!




New protocol decoder: nrf24l01

libsigrokdecode has gained support for a new protocol decoder recently, the nrf24l01 PD.

Thanks a lot to Jens Steinhauser for contributing the decoder, as well as a bunch of test files that we're using for some automated decoder tests (and that you can use to easily try out the decoder as well).

This decoder stacks on top of the SPI PD, decoding some higher-level commands used by the Nordic Semiconductor nRF24L01(+) 2.4GHz RF transceiver ICs.

A short description of the chip and its protocol and pins is available on the respective wiki page, along with pointers to further reading.

New major release of various sigrok components

Hi everyone! We're very happy to be able to announce a major new, coordinated release of:

There have been a lot of improvements in pretty much all parts of the code, including more supported hardware, more protocol decoders, more features, various bugfixes, better portability, improved GUIs, and lots more. Many thanks to all the contributors who helped to make this happen!


Starting with the libsigrok 0.3.0 release, all libsigrok drivers that talk to serial ports are using the cross-platform LGPL3+ libserialport library now (which has its first release, 0.1.0, today). This also helps to improve the Windows support for sigrok.

The library was written by Martin Ling (thanks a lot!) and supports a number of OSes, including Linux, Mac OS X, Windows, and others. Supported features include port enumeration, opening/closing ports, setting port parameters (baud rate, parity, and so on), reading/writing/flushing data, etc. etc. You can take a look at the API docs for more details.

Note: libserialport is completely independent of sigrok, i.e. it can be used by various other open-source projects without any problems, too.


The most interesting libsigrok changes for users will likely be the new hardware support, so here goes:

There have also been a number of other (infrastructure) changes and improvements, though:

  • We added support for channel groups (multiple channels of the device, that share some properties and are configured together).
  • There's a generic SCPI backend now that drivers can use, supporting various transports: serial ports, USBTMC, TCP/RAW, TCP/Rigol, VXI, and librevisa.
  • The session file format (*.sr) has changed and its version was bumped to 2.
  • There's improved Windows support now for serial port and USB based devices, though it's partially still experimental! Please checkout the current list of known Windows issues, since there are some problems e.g. with the popular FX2 based devices (bug #343) and the Openbench Logic Sniffer (bug #205). Feedback, bug reports and patches are highly welcome!
  • Various API improvements were also done, to allow for some of the new features and to ease future extendability. You can take a look at the API docs for more details.
  • And of course there was a huge amount of bugfixing, as usual.

See the NEWS file for the full list of changes.


Same deal for libsigrokdecode, most people will probably want to know which new protocol decoders are supported:

  • guess_bitrate: Guess the bitrate/baudrate of a signal
  • ir_nec: NEC infrared remote control protocol
  • ir_rc5: RC-5 infrared remote control protocol
  • midi: Musical Instrument Digital Interface
  • parallel: Parallel synchronous bus decoder
  • rgb_led_spi: RGB LED string decoder (SPI)
  • xfp: 10 Gigabit Small Form Factor Pluggable Module
  • z80: Zilog Z80 microprocessor disassembly

The protocol decoder backend has also received a bunch of new features and facilities in this release:

  • Support for annotation rows (groups of annotation classes to be shown together).
  • The new OUTPUT_BINARY facility allows PDs to output decoded data in various (file) formats (e.g. I²S output in WAV format, USB output in PCAP format for Wireshark, LCD controller output in PNG format for viewing, and so on).
  • The new OUTPUT_META facility allows PDs to report certain data points or events to the frontend, which can be used for various post-processing and statistics purposes (e.g. simple counts, average/mean values, min/max values, and more).
  • The protocol decoder API has changed, the API version is bumped to 2. Decoders using the old PD API no longer work with this library release.
  • A large amount of PD fixes have been done to improve the usability of all PDs when used with GUIs (long/short annotations for zoom-dependent display, corrected annotation sample numbers, use of annotation rows, and so on).
  • Various API improvements were also performed to allow for all the new features. You can take a look at the API docs for more details.
  • And of course all PDs and the library code have received quite a few bugfixes, as usual.

See the NEWS file for the full list of changes.


sigrok-cli (a command-line sigrok frontend) now depends on both libsigrok >= 0.3.0 and libsigrokdecode >= 0.3.0 and supports all the new features of the libraries, including channel groups, PD annotation rows, the new *.sr file format, plus the usual bunch of bugfixes.

The following changes have been performed for the command-line options:

  • The -g | --channel-group option was added.
  • The -M option (for PD meta output type support) was added.
  • The -B option (for PD binary output type support) was added.
  • The -p | --probes option was renamed to to -C | --channels.

There were also a bunch of improvements related to the (experimental) sigrok-cli Windows installer. You can download an (experimental) nightly build here: sigrok-cli-NIGHTLY-installer.exe. Any feedback, bug reports, or patches are highly welcome!

See the NEWS file for the full list of changes.


PulseView (a Qt based sigrok GUI for logic analyzers, oscilloscopes and MSOs) has also received quite a huge amount of improvements and new features (thanks a lot to Joel Holdsworth!):

  • Support for protocol decoding (via libsigrokdecode) has been added, including support for annotation rows, multiple decoders in the same GUI window, support for stacking protocol decoders (e.g. I²C -> RTC8564, UART -> MIDI, or SPI -> SDcard) and lots more.
  • Support for loading and saving sigrok session (*.sr) files has been added.
  • Initial support for analog data sources (specifically oscilloscopes, e.g. the Rigol DS1052E) has been added.
  • The Windows installer has received a bunch of fixes and improvements, too. You can download an (experimental) nightly build here: pulseview-NIGHTLY-installer.exe. Any feedback, bug reports, or patches are highly welcome!
  • And of course there were quite a number of bugfixes, as usual.

See the NEWS file for the full list of changes.


This release of sigrok-firmware-fx2lafw, the open-source firmware for FX2-based logic analyzers, is only a minor bugfix release. It basically only fixes one bug which lead to the data pins not being tri-stated after an acquisition, but rather being driven.

See the NEWS file for the full list of changes.


Have fun analyzing your signals!

Windows support and installers

For a long time Windows support in sigrok was somewhat lacking and/or in the TODO state, but things have improved quite a bit recently.

While there have been both a working cross-compile setup based on MinGW (additionally based on the MXE suite of scripts) as well as working NSIS-based installer executables for sigrok-cli and for PulseView for quite a while, they weren't really all that useful.

Only very few devices used to actually work in practice due to portability issues and due to certain limitations in the way libsigrok was talking to USB-based hardware devices (e.g. various logic analyzers) and serial port based devices.

All of this has changed though. A major part of the solution and fixing was done by Martin Ling (thanks a lot!) by writing specific thread-/Event-based code for the Windows platform for allowing libsigrok drivers based on libusb to properly work on Windows (transparently, i.e. without requiring changes to the drivers).

The other part of the puzzle is the new LGPL3+ libserialport shared library, also written by Martin Ling (thanks again!), which is a portable, cross-platform C libary (that is completely independent of libsigrok, i.e. it can be used by various other open-source projects without any problems, too). So far, it supports Linux, Windows, Mac OS X, and some BSDs. More on libserialport in another blog post.

With all the above-mentioned improvements we're now providing daily-built, self-contained Windows installers for sigrok-cli and PulseView, that ship with everything you need (the executables and libraries, the protocol decoders, some firmware files, some example files you can use for testing decoders and UIs, the Windows Python 3 installer you need for running protocol decoders, the Zadig tool you need for switching devices to use the libusb driver, etc. etc.).


Please make sure to read the Windows wiki page, it contains some more information related to drivers, firmware files, current device status, and so on.

We've tested the basic functionality on Windows XP and Windows 7 (and we don't expect any issues on Windows Vista or Windows 8 either), but we're happy to hear any feedback you may have and/or issues you might encounter.


New protocol decoder: ir_nec

We're happy to announce that libsigrokdecode now supports yet another protocol decoder, this time: ir_nec. The PD has been contributed by Gump Yang, thanks a lot!

This is a decoder for the so-called NEC infrared (IR) protocol, a rather widely used protocol for remote controls (for TVs, VCRs, and lots of other things).

The protocol is based on a pulse-distance encoding, i.e., a 1 bit is encoded by a pulse and a long pause after that, and a 0 is encoded by a pulse and a short pause after the pulse.

The "payload" basically consists of an 8-bit address (which is a number that is supposed to be unique for a certain vendor / device), and an 8-bit command / code which identifies which button was actually pressed.

The 8-bit address is followed by the inverted 8-bit address, the 8-bit code is also followed by its inverse. This is (or can be) used for error checking on the receiver side.

You can read up on the protocol details in various online resources.

When the proper definitions for specific remote controls are added to the PD, it can also decode the actual remote control button in a more human-readable form e.g. "Matsui TV: Mute" vs. "Address: 0x40, command: 0x10", see screenshot for an example.


Brymen BM869 support

Yes, it's time for another multimeter! This time libsigrok has gained support for the Brymen BM869 multimeter (the code was written by Aurelien Jacobs, thanks a lot!).

This is a 50000 counts True RMS DMM with various "higher-end" features compared to other, cheaper DMMs.

The PC connectivity interface Brymen BU-86X is using USB/HID internally (based on the Cypress CY7C63743 enCoRe USB chip), the protocol is relatively simple and documented by the manufacturer.

You can also browse the source code if you're interested in some of the implementation details.


New protocol decoder: rgb_led_spi

We're happy to announce that there's a new protocol decoder available in libsigrokdecode since today, rgb_led_spi (thanks to Matt Ranostay for the contribution!).

This is a small PD that decodes RGB (red/green/blue) values for a certain type of LED controller that are sent from a host/microcontroller via SPI in order to light up the LEDs in a certain color.

It can be used for decoding data to a WorldSemi WS2801 RGB LED controller, for example (see the led/ws2801 directory in the sigrok-dumps repo for sample files).

Since this (rather simple) "protocol" is transmitted over SPI, the protocol decoder can make use of the stacking feature in libsigrokdecode and simply stack upon the spi decoder (thus avoiding having to re-implement all of the SPI handling in the RGB LED decoder itself).

Happy LED blinking!

Gossen Metrawatt Metrahit multimeter support

A few weeks ago libsigrok received support for various Gossen Metrawatt multimeters, a line of DMMs we didn't yet support at all.

The respective gmc-mh-1x-2x driver (for the Gossen Metrawatt Metrahit 1x/2x series multimeters) was contributed by Matthias Heidbrink (thanks a lot!).

It already supports a number of devices, e.g. the

Other devices are already being worked on, and/or can be added to the driver by interested users (patches welcome!).

The driver was tested with the Metrahit RS232 PC interface, support for other interfaces may follow (again, patches and people who can test with these interfaces are highly welcome).


Hameg HMO scope support and SCPI backend code

The list of contributed hardware drivers for libsigrok is getting longer yet again. This time, support for the Hameg HMO series oscilloscopes (tested on Hameg HMO1524) has been added by poljar (Damir Jelić), thanks a lot! It has recently also been successfully tested on a Hameg HMO2024 at 30C3 in Hamburg.

This driver should support the Hameg HMO compact series device (70MHz - 200MHz) for now, other devices can be added later though. It also makes use of the recently added probe groups feature to allow setting coupling, trigger slope, timebase and so on independently for each scope channel. Currently the driver supports the serial port connectivity of the scope.

Since SCPI commands are used for controlling and querying the scope, poljar also added an initial set of common SCPI related functions to libsigrok, which other drivers can also make use of later. Those functions initially assumed a serial port transport, but have been made more generic in the mean time by Martin Ling (thanks!), now supporting SCPI over USBTMC and SCPI over TCP too.

Probe groups support

libsigrok has gained a long-overdue feature recently: support for so-called probe groups.

Until now, various config options for drivers have always applied to all probes of a device. For example, on a 2-channel oscilloscope like the Rigol DS1052E you could set e.g. the "Volts per division" config option to a certain value (say, 2V). However, the setting would always be applied to all probes (i.e., both channels of the scope). It was not possible to set different values for each individual probe.

The new probe groups feature (via the respective API changes in the drivers and libsigrok backend code) allows each driver to define groups of probes that have the same properties and the same settings. This applies to all kinds of drivers/devices (not just oscilloscopes), including multimeters, logic analyzers, MSOs, thermometers, and so on.

The following example sigrok-cli call will change the V/div setting on a Rigol DS1052E scope to 2V, but only on the "CH1" probe group (which happens to only contain one probe, the first channel of the scope):

 $ sigrok-cli --driver rigol-ds1xx2:conn=/dev/usbtmc0 --probe-group CH1 -c vdiv=2V --set

It does not change the V/div setting of all other probe groups (i.e., the second channel of the scope in this case).

Thanks a lot to Martin Ling for coming up with the proposal for probe group support in libsigrok, as well as the initial implementation!

So far the rigol-ds1xx2 driver has been converted to actively use the new probe groups feature. Various other drivers will follow over time.


Subscribe to RSS - Uwe Hermann's blog